Multilevel color halftoning
Joan L. Mitchell, Gehard Thompson, et al.
CIC 2001
Normalized Laplacian matrices of graphs have recently been studied in the context of quantum mechanics as density matrices of quantum systems. Of particular interest is the relationship between quantum physical properties of the density matrix and the graph theoretical properties of the underlying graph. One important aspect of density matrices is their entanglement properties, which are responsible for many nonintuitive physical phenomena. The entanglement property of normalized Laplacian matrices is in general not invariant under graph isomorphism. In recent papers, graphs were identified whose entanglement and separability properties are invariant under isomorphism. The purpose of this note is to completely characterize the set of graphs whose separability is invariant under graph isomorphism. In particular, we show that this set consists of K2,2 and its complement, all complete graphs and no other graphs. © 2010 Elsevier B.V. All rights reserved.
Joan L. Mitchell, Gehard Thompson, et al.
CIC 2001
Vidya Muthukumar, Tejaswini Pedapati, et al.
CVPRW 2019
Zhenghua Fu, Chai Wah Wu, et al.
COMPSAC 2008
Makoto Itoh, Chai Wah Wu, et al.
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering