About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B
Paper
Monte Carlo investigation of dynamic critical phenomena in the two-dimensional kinetic Ising model
Abstract
Extending the Monte Carlo method to dynamic critical phenomena we investigated the time-dependent correlation functions in the two-dimensional one-spin-flip Ising model and the critical behavior of the associated relaxation times. These relaxation times are the following: τδμΔT, characterizing the approach of the order parameter to equilibrium after a change of temperature ΔT of the system; τδμδμ and τδμδμA characterizing the slowing down of the order-parameter correlation and autocorrelation functions, respectively; τδHδH and τδHδHA, characterizing the slowing down of the energy correlation and autocorrelation functions; and finally τδμδH, characterizing the cross-correlation function. We give estimates for the associated exponents ΔδμΔTΔδμδμΔδHδ HΔδμδH1.90±0.10, and ΔδμδμA1.60±0.10, ΔδμδHA0.95±0.10, ΔδHδHA0, which are consistent with the dynamic scaling hypothesis and with exact inequalities. A detailed comparison with recent high-temperature-expansion estimates is performed, and the reliability of the Monte Carlo results is carefully analyzed. © 1973 The American Physical Society.