About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ITherm 2017
Conference paper
Microfluidic two-phase cooling of a high power microprocessor part B: Test and characterization
Abstract
The effective use of embedded radial expanding micro-channels with micro-pin fields for two phase cooling of semiconductor dies has been demonstrated [1, 2]. In this second part of a two part paper, the functional results of integrating this approach into a high performance server are presented. First, a number of microprocessor modules were fully characterized within a high performance server utilizing both an idle state and a workload designed to drive maximum processor power. These characterizations were done across a wide operating frequency range of 2.2 to 4.3 GHz. After modification to incorporate embedded radial expanding micro-channels for two phase flow, the microprocessor modules were reinstalled in the server supported by a two phase liquid cooling pump and condenser system with flow, temperature and pressure drop measuring capabilities. The modules were then characterized again over the same operating frequency range for a range of coolant flow rates and resulting average vapor qualities. The results show full processor function and excellent thermal behavior across a wide range of coolant flow rates, directly demonstrating the feasibility of this technology for cooling actual high power electronic devices.