About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Applied Physics
Paper
Materials investigation for thermally-assisted magnetic random access memory robust against 400°C temperatures
Abstract
Magnetic materials are investigated in order to enable a new type of Thermally Assisted Magnetic Random Access Memory (TAS-MRAM). A TAS-MRAM materials stack that is robust against the 400°C process temperatures required for embedded integration with complementary metal oxide silicon processes is demonstrated. In unpatterned sheet film stacks, a stable resistance-area product, tunneling magnetoresistance (MR)>100%, and temperature-dependent exchange bias of 1500Oe after 400°C anneal are shown for this stack. It is further shown that by doping the sense and storage layers with Ta using thin laminations of Ta/CoFeB, the moment of each layer can be reduced by more than 40% without a major reduction in MR. In patterned nanopillar devices, it is shown that by reducing the moment of the sense and storage layers with laminations of Ta, and by adding a second MgO barrier, the resistance versus applied field loop quality is maintained, while the read field is reduced by more than 40% and devices survive 10<sup>8</sup> write cycles without breakdown or significant degradation.