About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Magnetic studies of the four-iron high-potential, non-heme protein from Chromatium vinosum
Abstract
Extensive EPR studies on high-potential, iron-sulfur protein from Chromatium vinosum indicate that the singular spectrum of this four-iron, non-heme protein consists of a superposition of three distinct signals; namely, two principal signals of equal weight, one reflecting axial and the other rhombic symmetry, and a third nearly isotropic minority component. In addition, magnetic susceptibility experiments on two oxidation states of the protein from 4.2 to approx. 260 °K indicate antiferromagnetic exchange coupling between iron atoms. Possible origins of the complex EPR signals are discussed, and a preferred model that is consistent with EPR, magnetic susceptibility, NMR, X-ray, and Mössbauer data is presented. © 1975.