About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Long-range, minority-carrier transport in high quality "surface- free" GaAs/AlGaAs double heterostructures
Abstract
Using a novel time-resolved optical photoluminescence imaging technique, analogous to the electrical Haynes-Shockley experiment, we have measured room-temperature minority-carrier transport in a series of "surface- free" GaAs/Al0.3Ga0.7As double heterostructures. These measurements are only possible in "surface-free" samples in which the band-to-band radiative recombination lifetimes are long-here up to 2.5 μs. We find minority-carrier transport to be "diffusive", with diffusion lengths of up to ∼140 μm. We also find transport in thick (≳1 μm) structures to be mediated by hole-dominated ambipolar diffusion, whereas for thinner structures a transition from ambipolar to free-electron-dominated diffusion is observed. These results demonstrate that our heterostructures become effectively modulation doped for GaAs thicknesses ≲1 μm.