About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Chemical Physics
Paper
Long range interactions on wires: A reciprocal space based formalism
Abstract
There are many atomic scale systems in materials, chemistry, and biology that can be effectively modeled as finite in two of the physical spatial dimensions and periodically replicated in the third including nanoscale metallic and semiconducting wires, carbon nanotubes, and DNA. However, it is difficult to design techniques to treat long range forces in these systems without truncation or recourse to slowly convergent supercells or computationally inefficient Poisson solvers. In this paper, a rigorous reciprocal space based formalism which permits long range forces on wires to be evaluated simply and easily via a small modification of existing methods for three dimensional periodicity is derived. The formalism is applied to determine long range interactions both between point particles using an Ewald-like approach and the continuous charge distributions that appear in electronic structure calculations. In this way, both empirical force field calculations and, for example, plane-wave based density functional theory computations on wires can be performed easily. The methodology is tested on model and realistic systems including a lithium doped carbon nanotube. © 2004 American Institute of Physics.