About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
JCTC
Paper
Computed Binding of Peptides to Proteins with MELD-Accelerated Molecular Dynamics
Abstract
It has been a challenge to compute the poses and affinities for binding of peptides to proteins by molecular dynamics (MD) simulations. Such computations would be valuable for capturing the physics and the conformational freedom of the molecules, but they are currently too computationally expensive. Here we describe using MELD (Modeling Employing Limited Data)-accelerated MD for finding the binding poses and approximate relative binding free energies for flexible-peptide/protein interactions. MELD uses only weak information about the binding motif and not the detailed binding mode that is typically required by other free-energy-based methods. We apply this technique to study binding of P53-derived peptides to MDM2 and MDMX. We find that MELD finds correct poses, that the binding induces the peptide into the correct helical conformation, and that it is capable of roughly estimating relative binding affinities. This method may be useful in peptide drug discovery.