About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CIKM 2012
Conference paper
Learning to rank for robust question answering
Abstract
This paper aims to solve the problem of improving the ranking of answer candidates for factoid based questions in a state-of-the-art Question Answering system. We first provide an extensive comparison of 5 ranking algorithms on two datasets - from the Jeopardy quiz show and a medical domain. We then show the effectiveness of a cascading approach, where the ranking produced by one ranker is used as input to the next stage. The cascading approach shows sizeable gains on both datasets. We finally evaluate several rank aggregation techniques to combine these algorithms, and find that Supervised Kemeny aggregation is a robust technique that always beats the baseline ranking approach used by Watson for the Jeopardy competition. We further corroborate our results on TREC Question Answering datasets. © 2012 ACM.