About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Paper
Interval-valued reduced-order statistical interconnect modeling
Abstract
We show how advances in the handling of correlated interval representations of range uncertainty can be used to approximate the mass of a probability density function as it moves through numerical operations and, in particular, to predict the impact of statistical manufacturing variations on linear interconnect. We represent correlated statistical variations in resistanceinductance-capacitance (RLC) parameters as sets of correlated intervals and show how classical model-order reduction methods-asymptotic waveform evaluation and passive reducedorder interconnect macromodeling algorithm-can be retargeted to compute interval-valued, rather than scalar-valued, reductions. By applying a simple statistical interpretation and sampling to the resulting compact interval-valued model, we can efficiently estimate the impact of variations on the original circuit. Results show that the technique can predict mean delay and standard deviation with errors between 5% and 10% for correlated RLC parameter variations up to 35%. © 2007 IEEE.