About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Paper
Probabilistic interval-valued computation: Toward a practical surrogate for statistics inside CAD tools
Abstract
Interval methods offer a general fine-grain strategy for modeling correlated range uncertainties in numerical algorithms. We present a new improved interval algebra that extends the classical affine form to a more rigorous statistical foundation. Range uncertainties now take the form of confidence intervals. In place of pessimistic interval bounds, we minimize the probability of numerical "escape"; this can tighten interval bounds by an order of magnitude while yielding 10-100× speedups over Monte Carlo. The formulation relies on the following three critical ideas: liberating the affine model from the assumption of symmetric intervals; a unifying optimization formulation; and a concrete probabilistic model. We refer to these as probabilistic intervals for brevity. Our goal is to understand where we might use these as a surrogate for expensive explicit statistical computations. Results from sparse matrices and graph delay algorithms demonstrate the utility of the approach and the remaining challenges. © 2008 IEEE.