About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Paper
Statistical blockade: Very fast statistical simulation and modeling of rare circuit events and its application to memory design
Abstract
Circuit reliability under random parametric variation is an area of growing concern. For highly replicated circuits, e.g., static random access memories (SRAMs), a rare statistical event for one circuit may induce a not-so-rare system failure. Existing techniques perform poorly when tasked to generate both efficient sampling and sound statistics for these rare events. Statistical blockade is a novel Monte Carlo technique that allows us to efficiently filter-to block-unwanted samples that are insufficiently rare in the tail distributions we seek. The method synthesizes ideas from data mining and extreme value theory and, for the challenging application of SRAM yield analysis, shows speedups of 10-100 times over standard Monte Carlo. © 2009 IEEE.