About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B
Paper
Interionic energy transfer by electric multipole interaction in rare-earth pentaphosphates
Abstract
We present a thorough investigation of nonradiative energy-transfer processes in various rare-earth (R) pentaphosphates (RP5O14). Using time-resolved fluorescence spectroscopy, different crystals with high and low concentration of the interacting R3+ ions were investigated. It turns out that energy transfer in RP5O14 causes both spatial energy migration of excited states and fluorescence quenching. At high rare-earth concentration the concentration dependence of fluorescence quenching is shown to be governed by fast energy migration. From low-concentration measurements the dominant interionic coupling mechanism could be determined employing a microscopic picture for the energy-transfer process. A particular statistical model is introduced to combine the results obtained in the low- and high-concentration limit. The investigations yield that energy transfer in RP5O14 is due to electric multipole interactions within the entire range of rare-earth concentrations, even at interionic spacings of 5. © 1981 The American Physical Society.