About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ACS AMI
Paper
Integration of Single Oriented Oxide Superlattices on Silicon Using Various Template Techniques
Abstract
To benefit from the diverse functionalities of perovskite oxides in silicon-based complementary metal oxide semiconductor (CMOS) technology, integrating oxides into a silicon platform has become one of the major tasks for oxide research. Using the deposition of LaMnO3/SrTiO3 (STO) superlattices (SLs) as a case study, we demonstrate that (001) single oriented oxide SLs can be integrated on Si using various template techniques, including a single-layer buffer of STO prepared by molecular beam epitaxy (MBE) and pulsed laser deposition, a multilayer buffer of Y-stabilized zirconia/CeO2/LaNiO3/STO, and STO-coated two-dimensional nanosheets of Ca2Nb3O10 (CNO) and reduced graphene oxide. The textured SL grown on STO-coated CNO nanosheets shows the highest crystallinity, owing to the small lattice mismatch between CNO and STO as well as less clamping from a Si substrate. The epitaxial SL grown on STO buffer prepared by MBE suffers the largest thermal strain, giving rise to a strongly suppressed saturation magnetization but an enhanced coercive field, as compared to the reference SL grown on an STO single crystal. These optional template techniques used for integrating oxides on Si are of significance to fulfill practical applications of oxide films in different fields.