About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Shengxue Xuebao/Acta Acustica
Paper
Hybrid method to convert acoustic features for voice conversion
Abstract
The overly smoothing problem of GMM mapping method is first analyzed, and lost spectral details arising from improper covariance matrixes are considered as the main causation. Thus a hybrid mapping method, which converts envelope-subtracted spectral details by GMM and phone-tied codebook mapping method, is proposed. GMM training in this paper is performed in each phonetic data for faster GMM training. Objective evaluations based on performance indices show that the performance of proposed training method with phonetic information averagely improves 12.87% with tradition GMM training method, and proposed mapping method can improve 27.13% with optimal parameters comparing traditional GMM mapping algorithm with new training method.