About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B
Paper
Hopping conduction in a two-dimensional impurity band
Abstract
The temperature dependence (380 mK<T<80 K) and electric field dependence (50 mV/cm<F<150 V/cm) of hopping conduction have been measured as a function of the impurity concentration, surface electric field, and carrier density in a quasi-two-dimensional impurity band formed in the inversion layer of a sodium-doped silicon metal-oxide-semiconductor field-effect transistor. The conductivity is found to be an exponential function of the temperature and applied electric field. Our observations can be accommodated by noninteracting, single-particle hopping models based on percolation theory in which the Coulomb repulsion between electrons on different sites is ignored. For impurity concentrations in the range 2×1011 to 1.14×1012 cm-2 and localization lengths from 3.4 to 7.5 nm, the noninteracting theories accurately describe eight-orders-of-magnitude change in the conductivity of a half-filled impurity band observed for a factor-of-80 change in temperature, and three-orders-of-magnitude change in the non-Ohmic current observed for a factor-of-15 change in electric field. The observed temperature dependence of the conductivity is not consistent with the temperature dependence predicted by Efros and Shklovskii for a Coulomb gap in the single-particle excitation spectrum, although their theory was expected to predict the conductivity under the conditions examined in this experiment. © 1986 The American Physical Society.