About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ACS Nano
Paper
High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography
Abstract
The isolation of semiconducting carbon nanotubes (CNTs) to ultrahigh (ppb) purity is a prerequisite for their integration into high-performance electronic devices. Here, a method employing column chromatography is used to isolate semiconducting nanotubes to 99.9% purity. The study finds that by modifying the solution preparation step, both the metallic and semiconducting fraction are resolved and elute using a single surfactant system, allowing for multiple iterations. Iterative processing enables a far more rapid path to achieving the level of purities needed for high performance computing. After a single iteration, the metallic peak in the absorption spectra is completely attenuated. Although absorption spectroscopy is typically used to characterize CNT purity, it is found to be insufficient in quantifying solutions of high purity (>98 to 99%) due to low signal-to-noise in the metallic region of ultrahigh purity solutions. Therefore, a high throughput electrical testing method was developed to quantify the degree of separation by characterizing ∼4000 field-effect transistors fabricated from the separated nanotubes after multiple iterations of the process. The separation and characterization methods described here provide a path to produce the ultrahigh purity semiconducting CNT solutions needed for high performance electronics. © 2013 American Chemical Society.