High performance file I/O for the blue gene/L supercomputer
Abstract
Parallel I/O plays a crucial role for most data-intensive applications running on massively parallel systems like Blue Gene/L that provides the promise of delivering enormous computational capability. We designed and implemented a highly scalable parallel file I/O architecture for Blue Gene/L, which leverages the benefit of the hierarchical and functional partitioning design of the system software with separate computational and I/O cores. The architecture exploits the scalability aspect of GPFS (General Parallel File System) at the backend, while using MPI I/O as an interface between the application I/O and the file system. We demonstrate the impact of our high performance I/O solution for Blue Gene/L with a comprehensive evaluation that consists of a number of widely used parallel I/O benchmarks and I/O intensive applications. Our design and implementation is not only able to deliver at least one order of magnitude speed up in terms of I/O bandwidth for a real-scale application HOMME [7] (achieving aggregate bandwidth of 1.8 GB/Sec and 2.3 GB/Sec for write and read accesses, respectively), but also supports high-level parallel I/O data interfaces such as parallel HDF5 and parallel NetCDF scaling up to a large number of processors. © 2006 IEEE.