About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICDCS 2019
Conference paper
Generative policies for coalition systems - A symbolic learning framework
Abstract
Policy systems are critical for managing missions and collaborative activities carried out by coalitions involving different organizations. Conventional policy-based management approaches are not suitable for next-generation coalitions that will involve not only humans, but also autonomous computing devices and systems. It is critical that those parties be able to generate and customize policies based on contexts and activities. This paper introduces a novel approach for the autonomic generation of policies by autonomous parties. The framework combines context free grammars, answer set programs, and inductionbased learning. It allows a party to generate its own policies, based on a grammar and some semantic constraints, by learning from examples. The paper also outlines initial experiments in the use of such a symbolic approach and outlines relevant research challenges, ranging from explainability to quality assessment of policies.