About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Mathematical Programming
Paper
Generalized Chvátal-Gomory closures for integer programs with bounds on variables
Abstract
Integer programming problems that arise in practice often involve decision variables with one or two sided bounds. In this paper, we consider a generalization of Chvátal-Gomory inequalities obtained by strengthening Chvátal-Gomory inequalities using the bounds on the variables. We prove that the closure of a rational polyhedron obtained after applying the generalized Chvátal-Gomory inequalities is also a rational polyhedron. This generalizes a result of Dunkel and Schulz on 0–1 problems to the case when some of the variables have upper or lower bounds or both while the rest of them are unbounded.