About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICMR 2014
Conference paper
Flower classification for a citizen science mobile app
Abstract
This work describes an efficient approach for flower classification that is suitable for deployment in mobile devices, allowing its use in a citizen science application for biodiversity monitoring. In the proposed system, geo-located images are uploaded by the user and segmented semi-automatically. We propose a classification method based on histogram comparison of color, shape and texture cues, using metric learning for feature weighting. Our method is tested on the Oxford Flower Dataset and we are able to achieve state-of-the-art accuracy, while proposing an approach that can run efficiently in mobile devices. Copyright 2014 ACM.