About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review A
Paper
Elementary gates for quantum computation
Abstract
We show that a set of gates that consists of all one-bit quantum gates [U(2)] and the two-bit exclusive-OR gate [that maps Boolean values (x,y) to (x,xy)] is universal in the sense that all unitary operations on arbitrarily many bits n [U(2n)] can be expressed as compositions of these gates. We investigate the number of the above gates required to implement other gates, such as generalized Deutsch-Toffoli gates, that apply a specific U(2) transformation to one input bit if and only if the logical and of all remaining input bits is satisfied. These gates play a central role in many proposed constructions of quantum computational networks. We derive upper and lower bounds on the exact number of elementary gates required to build up a variety of two- and three-bit quantum gates, the asymptotic number required for n-bit Deutsch-Toffoli gates, and make some observations about the number required for arbitrary n-bit unitary operations. © 1995 The American Physical Society.