About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IJCNN 2018
Conference paper
Eigenspectrum Shape Based Nyström Sampling
Abstract
Spectral clustering has shown a superior performance in analyzing the cluster structure. However, its computational complexity limits its application in analyzing large-scale data. To address this problem, many low-rank matrix approximating algorithms are proposed, including the Nyström method - an approach with proven approximate error bounds. There are several algorithms that provide recipes to construct Nyström approximations with variable accuracies and computing times. This paper proposes a scalable Nyström-based clustering algorithm with a new sampling procedure, Centroid Minimum Sum of Squared Similarities (CMS3), and a heuristic on when to use it. Our heuristic depends on the eigenspectrum shape of the dataset, and yields competitive low-rank approximations in test datasets compared to the other state-of-the-art methods.