Tong Zhang, G.H. Golub, et al.
Linear Algebra and Its Applications
We present a fast algorithm for approximate canonical correlation analysis (CCA). Given a pair of tall-and-thin matrices, the proposed algorithm first employs a randomized dimensionality reduction transform to reduce the size of the input matrices, and then applies any CCA algorithm to the new pair of matrices. The algorithm computes an approximate CCA to the original pair of matrices with provable guarantees while requiring asymptotically fewer operations than the state-of-the-art exact algorithms.
Tong Zhang, G.H. Golub, et al.
Linear Algebra and Its Applications
Joy Y. Cheng, Daniel P. Sanders, et al.
SPIE Advanced Lithography 2008
R.A. Brualdi, A.J. Hoffman
Linear Algebra and Its Applications
Ligang Lu, Jack L. Kouloheris
IS&T/SPIE Electronic Imaging 2002