About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SIAM Journal on Scientific Computing
Paper
Efficient dimensionality reduction for canonical correlation analysis
Abstract
We present a fast algorithm for approximate canonical correlation analysis (CCA). Given a pair of tall-and-thin matrices, the proposed algorithm first employs a randomized dimensionality reduction transform to reduce the size of the input matrices, and then applies any CCA algorithm to the new pair of matrices. The algorithm computes an approximate CCA to the original pair of matrices with provable guarantees while requiring asymptotically fewer operations than the state-of-the-art exact algorithms.