About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Nano Letters
Paper
Control of shape and material composition of solid-state nanopores
Abstract
Solid-state nanopores fabricated by a high-intensity electron beam in ceramic membranes can be fine-tuned on three-dimensional geometry and composition by choice of materials and beam sculpting conditions. For similar beam conditions, 8 nm diameter nanopores fabricated in membranes containing SiO 2 show large depletion areas (70 nm in radius) with small sidewall angles (55°), whereas those made in SiN membranes show small depletion areas (40 nm) with larger sidewall angles (75°). Three-dimensional electron tomograms of nanopores fabricated in a SiO 2/SiN/SiO 2 membrane show a biconical shape with symmetric top and bottom and indicate a mixing of SiN and SiO 2 layers up to 30 nm from the edge of nanopore, with Si-rich particles throughout the membrane. Electron-energy-loss spectroscopy (EELS) reveals that the oxygen/ nitrogen ratio near the pore depends on the beam sculpting conditions. © 2009 American Chemical Society.