Publication
DEBS 2008
Conference paper

Complex event processing over uncertain data

View publication

Abstract

In recent years, there has been a growing need for active systems that can react automatically to events. Some events are generated externally and deliver data across distributed systems, while others are materialized by the active system itself. Event materialization is hampered by uncertainty that may be attributed to unreliable data sources and networks, or the inability to determine with certainty whether an event has actually occurred. Two main obstacles exist when designing a solution to the problem of event materialization with uncertainty. First, event materialization should be performed efficiently, at times under a heavy load of incoming events from various sources. The second challenge involves the generation of a correct probability space, given uncertain events. We present a solution to both problems by introducing an efficient mechanism for event materialization under uncertainty. A model for representing materialized events is presented and two algorithms for correctly specifying the probability space of an event history are given. The first provides an accurate, albeit expensive method based on the construction of a Bayesian network. The second is a Monte Carlo sampling algorithm that heuristically assesses materialized event probabilities. We experimented with both the Bayesian network and the sampling algorithms, showing the latter to be scalable under an increasing rate of explicit event delivery and an increasing number of uncertain rules (while the former is not). Finally, our sampling algorithm accurately and efficiently estimates the probability space. Copyright 2008 ACM.

Date

Publication

DEBS 2008

Authors

Share