About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
APS March Meeting 2021
Talk
Classical algorithms for quantum mean values
Abstract
We consider the task of estimating the expectation value of an n-qubit tensor product observable in the output state of a shallow quantum circuit. This task is a cornerstone of variational quantum algorithms for optimization, machine learning, and the simulation of quantum many-body systems. Here we study its computational complexity for constant-depth quantum circuits and tensor products of single-qubit observables which are (a) close to the identity, (b) positive semidefinite, (c) arbitrary. We show that the mean value problem admits a classical approximation algorithm with polynomial runtime in case (a) and subexponential runtime in case (b). In case (c) we give a linear-time algorithm for geometrically local circuits on a two-dimensional grid, which is based on a Monte Carlo method combined with Matrix Product State techniques.