About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ASAP 2014
Conference paper
Analyzing the energy-efficiency of dense linear algebra kernels by power-profiling a hybrid CPU/FPGA system
Abstract
It has been shown that FPGA accelerators can outperform pure CPU systems for highly parallel applications and they are considered as a power-efficient alternative to software programmable processors. However, when using FPGA accelerator cards in a server environment multiple sources of power consumption have to get taken into account in order to rate the systems energy-efficiency. In this paper we study the energy-efficiency of a hybrid CPU/FPGA system for a dense linear algebra kernel. We present an FPGA GEMM accelerator architecture that can be tailored to various data types. The performance and energy consumption is compared against tuned, multi-threaded GEMM functions running on the host CPU. We measure the power consumption with internal current/voltage sensors and break down the power draw to the systems components in order to classify the energy consumed by the processor cores, the memory, the I/O bus system and the FPGA card. Our experimental results show that the FPGA-accelerated DGEMM is less energy-efficient than a multi-threaded software implementation with respect to the full systems power consumption, but the most efficient choice when only the dynamic parts of the power are factored in. © 2014 IEEE.