About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE T-ED
Paper
An Analytical One-Dimensional Model for Lightly Doped Drain (LDD) MOSFET Devices
Abstract
An analytic one-dimensional model for lightly doped drain (LDD) MOSFET devices is presented. This model decomposes the LDD device into an intrinsic MOSFET in series with n-source and drain diffusion. A conventional charge control model with a pseudo two-di-mensional approach was used to calculate the current flow in the intrinsic. MOSFET. The voltage drops in the n-source and drain, including both IR drops and voltage drop across the depletion region of the drain were calculated analytically. By reconstructing all the voltage drops across contact, source/drain, and channel regions, the calculated drain currents as a function of terminal voltages agree well with experimental data. Device optimization is also presented by using this analytical model for “full” LDD and As-P double diffused LDD structures. © 1985 IEEE