About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE T-MI
Paper
A supervised framework for the registration and segmentation of white matter fiber tracts
Abstract
A supervised framework is presented for the automatic registration and segmentation of white matter (WM) tractographies extracted from brain DT-MRI. The framework relies on the direct registration between the fibers, without requiring any intensity-based registration as preprocessing. An affine transform is recovered together with a set of segmented fibers. A recently introduced probabilistic boosting tree classifier is used in a segmentation refinement step to improve the precision of the target tract segmentation. The proposed method compares favorably with a state-of-the-art intensity-based algorithm for affine registration of DTI tractographies. Segmentation results for 12 major WM tracts are demonstrated. Quantitative results are also provided for the segmentation of a particularly difficult case, the optic radiation tract. An average precision of 80% and recall of 55% were obtained for the optimal configuration of the presented method. © 2010 IEEE.