About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Astrophysical Journal Letters
Paper
A density dependence for protostellar luminosity in class i sources: Collaborative accretion
Abstract
Class I protostars in three high-mass star-forming regions are found to have correlations among the local projected density of other Class I protostars, the summed flux from these other protostars, and the protostellar luminosity in the WISE 22 μm band. Brighter Class I sources form in higher-density and higher-flux regions, while low luminosity sources form anywhere. These correlations depend slightly on the number of neighbors considered (from 2 to 20) and could include a size-of-sample effect from the initial mass function (i.e., larger numbers include rarer and more massive stars). Luminosities seem to vary by neighborhood with nearby protostars having values proportional to each other and higher density regions having higher values. If Class I luminosity is partially related to the accretion rate, then this luminosity correlation is consistent with the competitive accretion model, although it is more collaborative than competitive. The correlation is also consistent with primordial mass segregation and could explain why the stellar initial mass function resembles the dense core mass function even when cores form multiple stars. © 2014. The American Astronomical Society. All rights reserved.