About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE JSSC
Paper
A 7-nm Four-Core Mixed-Precision AI Chip with 26.2-TFLOPS Hybrid-FP8 Training, 104.9-TOPS INT4 Inference, and Workload-Aware Throttling
Abstract
Reduced precision computation is a key enabling factor for energy-efficient acceleration of deep learning (DL) applications. This article presents a 7-nm four-core mixed-precision artificial intelligence (AI) chip that supports four compute precisions - FP16, Hybrid-FP8 (HFP8), INT4, and INT2 - to support diverse application demands for training and inference. The chip leverages cutting-edge algorithmic advances to demonstrate leading-edge power efficiency for 8-bit floating-point (FP8) training and INT4 inference without model accuracy degradation. A new HFP8 format combined with separation of the floating- and fixed-point pipelines and aggressive circuit/architecture optimization enables performance improvements while maintaining high compute utilization. A high-bandwidth ring protocol enables efficient data communication, while power management using workload-aware clock throttling maximizes performance within a given power budget. The AI chip demonstrates 3.58-TFLOPS/W peak energy efficiency and 26.2-TFLOPS peak performance for HFP8 iso-accuracy training, and 16.9-TOPS/W peak energy efficiency and 104.9-TOPS peak performance for INT4 iso-accuracy inference.