Publication
IEEE JSSC
Paper

A 32 Gb/s, 4.7 pJ/bit Optical Link With-11.7 dBm Sensitivity in 14-nm FinFET CMOS

View publication

Abstract

This paper presents a 32 Gb/s non-return-to-zero optical link using 850-nm vertical-cavity surface-emitting laser-based multi-mode optics with 14-nm bulk FinFET CMOS circuits. The target application is the integration of optics on to the first-level package, connecting high-speed optical I/O directly to an advanced CMOS host chip (e.g., processor and switch) to increase package I/O bandwidth density and lower overall system power and cost. The optical link is designed for maximum link margin to tolerate high optical losses created by low-cost optical packaging. The transmitter (TX) uses a three-tap, 1/2-unit-interval-spaced feed-forward equalizer to improve eye opening. The receiver (RX) uses a low-bandwidth, low-noise transimpedance amplifier and a speculative one-tap decision-feedback equalizer for high sensitivity. The TX and RX power efficiencies are 3.3 and 1.4 pJ/bit, respectively. The TX optical modulation amplitude (OMA) is 1.2 dBm, and the RX sensitivity is-11.7 dBm OMA at a bit error rate of 10-12 with PRBS31 data, providing 12.9-dB link margin.

Date

01 Apr 2018

Publication

IEEE JSSC

Authors

Share