About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology
Paper
A 16-bit by 16-bit MAC design using fast 5:3 compressor cells
Abstract
3:2 counters and 4:2 compressors have been widely used for multiplier implementations. In this paper, a fast 5:3 compressor is derived for high-speed multiplier implementations. The fast 5:3 compression is obtained by applying two rows of fast 2-bit adder cells to five rows in a partial product matrix. As a design example, a 16-bit by 16-bit MAC (Multiply and Accumulate) design is investigated both in a purely logical gate implementation and in a highly customized design. For the partial product reduction, the use of the new 5:3 compression leads to 14.3% speed improvement in terms of XOR gate delay. In a dynamic CMOS circuit implementation using 0.225 μm bulk CMOS technology, 11.7% speed improvement is observed with 8.1% less power consumption for the reduction tree.