About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ISSCC 2013
Conference paper
A 0.1pJ/b 5-to-10Gb/s charge-recycling stacked low-power I/O for on-chip signaling in 45nm CMOS SOI
Abstract
Compact low-power signaling schemes to drive on-chip interconnects are needed for processor chips where high-bandwidth data buses connect processor cores and on-chip cache. Since a significant portion of the signaling power is dynamic power spent on driving long wires, reducing the signal swing improves power efficiency [1-3]. In addition, charge-recycling techniques reduce signal swing by stacking circuits with regular and predictable data switching activities, such as logic circuits [4] and clocking circuits [5]. Unlike conventional schemes, low-swing I/O that leverages charge-recycling techniques offers the potential for quadratic power reduction. We present a compact low-power I/O for on-chip signaling using charge-recycling stacked drivers and compact voltage regulators/converters. A receiver circuit modified from a parametric amplifier-based design [6] further improves the area and power efficiency. © 2013 IEEE.