AutoPeptideML: An Automated Machine Learning Method for Building Peptide Bioactivity Predictors Leveraging Protein Language ModelsRaúl Fernández DíazRodrigo Cossio-pérezet al.2023ICBG 2023
Optimizing CAR T cell design using quantum convolutional neural networksSara CapponiKahn Rhrissorrakraiet al.2024ISMB 2024
Detecting Blasts with Single Cell Resolution in Acute Myeloid Leukaemia using an Auto-EncoderAlice DriessenSusane Ungeret al.2023ISMB 2023
Machine learning methods to predict binding of SARS-CoV-2Sara CapponiShangying Wanget al.2021AAAI-SS 2021
A perspective on quantum computing for analyzing cell-cell communication networksFilippo UtroAritra Boseet al.2024ISMB 2024
AutoPeptideML: A study on how to build more trustworthy peptide bioactivity predictorsRaúl Fernández DíazRodrigo Cossio-pérezet al.2024ISMB 2024
Effect of dataset partitioning strategies for evaluating out-of-distribution generalisation for predictive models in biochemistryRaúl Fernández DíazLam Thanh Hoanget al.2024ISMB 2024
Cross Dataset Verification of Cell Type Annotation using a Transcriptomic Biomedical Foundation Model: Inflammatory Bowel Disease Use CaseAkihiro KosugiVibha Anandet al.2024ISMB 2024
Contextualizing Single-Cell Analyses: An AI Pipeline for Evidence Search from Literature and Gene DatabasesJoao Bettencourt-SilvaNatasha Mulliganet al.2024ISMB 2024
Identifying Putative Gene Markers: A Biomedical Foundation Model-based Approach for Cell Type AnnotationUri KartounAkira Kosekiet al.2024ISMB 2024