A new framework for evaluating model out-of-distribution generalisation for the biochemical domainRaúl Fernández DíazLam Thanh Hoanget al.2025ICLR 2025
Molecular Modelling in Bioactive Peptide Discovery and CharacterisationClement AgoniRaúl Fernández Díazet al.2025Molecules
A new framework for evaluating machine learning in biochemistry and its application for small molecules and peptidesRaúl Fernández DíazLam Thanh Hoanget al.2025IRB-AI-DD 2025
Effect of dataset partitioning strategies for evaluating out-of-distribution generalisation for predictive models in biochemistryRaúl Fernández DíazLam Thanh Hoanget al.2024ACS Fall 2024
Analysis of docking for binding affinity predictionRaúl Fernández DíazDenis Shieldset al.2024ACS Fall 2024
AutoPeptideML: A study on how to build more trustworthy peptide bioactivity predictorsRaúl Fernández DíazRodrigo Cossio-pérezet al.2024ISMB 2024
Effect of dataset partitioning strategies for evaluating out-of-distribution generalisation for predictive models in biochemistryRaúl Fernández DíazLam Thanh Hoanget al.2024ISMB 2024
Effect of dataset partitioning strategies for evaluating out-of-distribution generalisation for predictive models in biochemistryRaúl Fernández DíazLam Thanh Hoanget al.2024MoML 2024
AutoPeptideML: An Automated Machine Learning Method for Building Peptide Bioactivity Predictors Leveraging Protein Language ModelsRaúl Fernández DíazRodrigo Cossio-pérezet al.2023ICBG 2023