About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IJCAI 2015
Conference paper
Weakly supervised matrix factorization for noisily tagged image parsing
Abstract
In this paper, we propose a Weakly Supervised Matrix Factorization (WSMF) approach to the problem of image parsing with noisy tags, i.e., segmenting noisily tagged images and then classifying the regions only with image-level labels. Instead of requiring clean but expensive pixel-level labels as strong supervision in the traditional image parsing methods, we take noisy image-level labels as weakly-supervised constraints. Specifically, we first over-segment all the images into multiple regions which are initially labeled based upon the image-level labels. Moreover, from a low-rank matrix factorization viewpoint, we formulate noisily tagged image parsing as a weakly supervised matrix factorization problem. Finally, we develop an efficient algorithm to solve the matrix factorization problem. Experimental results show the promising performance of the proposed WSMF algorithm in comparison with the state-of-the-arts.