ECTC 2014
Conference paper

Wafer IMS (Injection molded solder) - A new fine pitch solder bumping technology on wafers with solder alloy composition flexibility

View publication


In this paper, we will describe a new low cost solder bumping technology for use on wafers. The wafer IMS (injection molded solder) process can form fine pitch solder bumps on wafers, while offering greater solder alloy flexibility. This method is also applicable to form uniform solder bump heights when a wafer has different size and shape of I/O pads. The wafer IMS bumping process uses a solder injection head that melts the desired bulk solder alloy composition and then dispenses the molten solder into resist material cavities on wafers within a nitrogen environment. The injected molten solder contacts and wets to the metal pads without flux, thus forming intermetallic compounds at the solder/pad interface. After stripping the resist material, solder bumps exhibit straight side walls and round tops as the solders have solidified inside the cavities of this resist film. This particular geometry is unique and offers a ready-for-substrate bonding condition without an additional reflow step. In the case of using Cu pillars, one resist material is used for both Cu electroplating and molten solder injection. After patterning the resist material, the Cu pillars are electroplated to the desired height, and the remaining cavities of resist material are filled by the injection of molten solder. The final bump height is defined by the thickness of the resist material. Therefore, any non-uniformity of Cu pillar height across a wafer is masked by the final solder bump uniformity. A prototype tool for wafer IMS bumping technology has been developed and solder bumping has successfully been demonstrated with Sn-3.0Ag-0.5Cu solder on 200mm wafers. The test wafer employed interconnects pads of four different diameters and three different shapes. Other solder compositions have also been tried successfully.