About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Visualization of columnar defects in superconductors
Abstract
Columnar defects in single crystals of superconductors were investigated using scanning probe microscopy. We show that the observable topography strongly depends on the crystal structure as well as on the type of the interaction with the probe. In scanning tunneling microscopy studies, the low conductance of the amorphous tracks leads to tip-surface contact. Owing to this contact, the defects are imaged as hollows having a depth that primarily reflects the tunneling distance. For the high transition temperature materials, atomic force microscopy images the real defect structure as hillocks growing out of the surface. This outgrowth of amorphous material is time dependent and produced by the relaxation of irradiation-induced stress. The dynamic outgrowth of the columnar defects is discussed in terms of a so-called "tooth paste" model.