About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
MLCAD 2020
Conference paper
Using DNNs and smart sampling for coverage closure acceleration
Abstract
Coverage Directed Generation represents algorithms that are used to create tests or test-templates for hitting coverage events. Standard approaches for solving the problem use either user's intuition or random sampling. Recent work has been using optimization algorithms in order to hit, a single hard-to-hit event. In this work we extend the optimization technique for many events and show that by using a deep neural network one can accelerate the optimization significantly. The algorithms are presented on the NorthStar simulator where we show substantial improvement over random based techniques and a factor larger than 2 on other optimization-based techniques.