About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Use of a local-density approximation for exchange-correlation potentials in multichannel atomic quantum-defect calculations
Abstract
Multichannel quantum-defect theory provides an attractive framework for compact, a priori calculations of the binding energies or scattering resonances of highly excited, multielectron atoms. However, in addition to obtaining a good representation of interchannel interactions, it is difficult in practice to find a sufficiently accurate, selfconsistent, simple, one-electron potential for describing the average motion of a Rydberg electron in the multielectron core. Moreover, when there is a nonspherical core there is a significant non-Coulomb tail even at fairly large distances from the origin, and due to exchange and correlations, such a potential will be nonlocal. We describe a self-consistent, local-density approximation to calculate a single-particle potential with proper self-interaction corrections, which represents quite accurately the motion of the outer electron in the presence of a spherically averaged core. This is derived from the well-known solid-state calculational technique based on the Hedin-Lundqvist approximation. The channel interactions and nonspherical contributions to intrachannel potentials are then calculated by explicitly considering the motion of two electrons outside the outermost closed-shell configuration of the atom. This procedure permits greatly increased accuracy in the prediction of excited-state energies of the entire spectral series. Explicit numerical results for quantum-defect parameters are presented for many Rydberg series in several alkali-metal and alkaline-earth atoms. © 1981 The American Physical Society.