About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
The generation of preferences represented as CP-nets for experiments and empirical testing has typically been done in an ad hoc manner that may have introduced a large statistical bias in previous experimental work. We present novel polynomial-time algorithms for generating CP-nets with n nodes and maximum in-degree c uniformly at random. We extend this result to several statistical cultures commonly used in the social choice and preference reasoning literature. A CP-net is composed of both a graph and underlying cp-statements; our algorithm is the first to provably generate both the graph structure and cp-statements, and hence the underlying preference orders themselves, uniformly at random. We have released this code as a free and open source project. We use the uniform generation algorithm to investigate the maximum and expected flipping lengths, i.e., the maximum length over all outcomes o 1 and o 2 , of a minimal proof that o 1 is preferred to o 2 . Using our new statistical evidence, we conjecture that, for CP-nets with binary variables and complete conditional preference tables, the expected flipping length is polynomial in the number of preference variables. This has positive implications for the usability of CP-nets as compact preference models.