About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CAI 2024
Workshop paper
Towards Foundation Models for the Industrial Forecasting of Chemical Kinetics
Abstract
Scientific Machine Learning is transforming traditional engineering industries by enhancing the efficiency of existing technologies and accelerating innovation, particularly in modeling chemical reactions. Despite recent advancements, the issue of solving stiff chemically reacting problems within computational fluid dynamics remains a significant issue. In this study we propose a novel approach utilizing a multi-layer-perceptron mixer architecture (MLP-Mixer) to model the time-series of stiff chemical kinetics. We evaluate this method using the ROBER system, a benchmark model in chemical kinetics, to compare its performance with traditional numerical techniques. This study provides insight into the industrial utility of the recently developed MLP-Mixer architecture to model chemical kinetics and provides motivation for such neural architecture to be used as a base for time-series foundation models.