About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Nanotechnology Magazine
Paper
The role of short-term plasticity in neuromorphic learning: Learning from the timing of rate-varying events with fatiguing spike-timing-dependent plasticity
Abstract
Neural networks (NNs) have been able to provide record-breaking performance in several machine-learning tasks, such as image and speech recognition, natural-language processing, playing complex games, and data analytics for scientific or business purposes [1]. They process their inputs through a series of linear and nonlinear operations and use learning algorithms, i.e., rules that optimize the parameters of the network.