About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
VLSI Circuits 2019
Conference paper
Computational memory-based inference and training of deep neural networks
Abstract
In-memory computing is an emerging computing paradigm where certain computational tasks are performed in place in a computational memory unit by exploiting the physical attributes of the memory devices. Here, we present an overview of the application of in-memory computing in deep learning, a branch of machine learning that has significantly contributed to the recent explosive growth in artificial intelligence. The methodology for both inference and training of deep neural networks is presented along with experimental results using phase-change memory (PCM) devices.