About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
The crystallization mechanism of high-cordierite glass
Abstract
The crystallization mechanism of high-cordierite (2MgO·2Al2O3·5SiO2) from a bulkglass containing B2O3 and P2O5 as nucleating agents was studied using X-ray diffraction, differential thermal analysis and a polarizing microscope. Thin glass specimens, with a mirror surface, were heated rapidly in an electric furnace in the temperature range 888 to 1363° C for a desired time and then rapidly quenched to room temperature. The normal rate of growth of precipitated cordierite crystals was measured and their morphological change was observed photographically. The growth rate increased with temperature, and the maximum rate occurred at about 1250° C. The crystal morphology was hexagonalprismatic, elongated along the c-axis. Faceted interface morphology was observed when the range of undercooling was from 7 to 174° C. Judging from the relationship between the reduced growth rate and the degree of undercooling, the crystallization mechanism in the range of lower undercooling was governed by a layer growth depending on the surface nucleation mechanism. In the range of higher undercooling, continuous growth was seen and at intermediate undercooling a transition range from a layer growth to a continuous growth was evident. © 1985 Chapman and Hall Ltd.