About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
WWW 2012
Conference paper
TEM: A novel perspective to modeling content on microblogs
Abstract
In recent times, microblogging sites like Facebook and Twitter have gained a lot of popularity. Millions of users world wide have been using these sites to post content that interests them and also to voice their opinions on several current events. In this paper, we present a novel non-parametric probabilistic model - Temporally driven Theme Event Model (TEM) for analyzing the content on microblogs. We also describe an online inference procedure for this model that enables its usage on large scale data. Experimentation carried out on real world data extracted from Facebook and Twitter demonstrates the efficacy of the proposed approach. Copyright is held by the author/owner(s).