About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICCAD 2020
Conference paper
Symbolic Uniform Sampling with XOR Circuits
Abstract
Uniform sampling is an important method in statistics and has various applications in model counting, system verification, algorithm design, among others. Symbolic sampling in a Boolean space is a recently proposed technique that combines sampling and symbolic representation for effective Boolean reasoning. Under the framework of symbolic sampling, we propose a method to construct compact XOR circuits achieving uniform sampling in a given Boolean space. The method is further extended to biased sampling within a focused subspace of interest. Experimental results show the effectiveness of compact sampling circuit generation and its potential to facilitate Boolean reasoning.