About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Computer Speech and Language
Paper
Super-human multi-talker speech recognition: A graphical modeling approach
Abstract
We present a system that can separate and recognize the simultaneous speech of two people recorded in a single channel. Applied to the monaural speech separation and recognition challenge, the system out-performed all other participants - including human listeners - with an overall recognition error rate of 21.6%, compared to the human error rate of 22.3%. The system consists of a speaker recognizer, a model-based speech separation module, and a speech recognizer. For the separation models we explored a range of speech models that incorporate different levels of constraints on temporal dynamics to help infer the source speech signals. The system achieves its best performance when the model of temporal dynamics closely captures the grammatical constraints of the task. For inference, we compare a 2-D Viterbi algorithm and two loopy belief-propagation algorithms. We show how belief-propagation reduces the complexity of temporal inference from exponential to linear in the number of sources and the size of the language model. The best belief-propagation method results in nearly the same recognition error rate as exact inference. © 2008 Elsevier Ltd. All rights reserved.